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SEQUENCES OF FUZZY REAL NUMBERS

BIPUL SARMA

(Received 9 December 2016)

Abstract. In this article we introduce some I-convergent difference sequence spaces of fuzzy real numbers

defined by modulus function and study their different properties like completeness, solidity, symmetricity etc.

1. Introduction.The notion of I-convergence of real valued sequence was studied at
the initial stage by Kostyrko, Šalát and Wilczyński (2000–2001) which generalizes and unifies
different notions of convergence of sequences. The notion was further studied by Šalát, Tripathy
and Ziman (2004).

The notion of fuzzy sets was introduced by Zadeh (1965). After that many authors have
studied and generalized this notion in many ways, due to the potential of the introduced
notion. Also it has wide range of applications in almost all the branches of studied in particular
science, where mathematics is used. It attracted many workers to introduce different types of
fuzzy sequence spaces.

Bounded and convergent sequences of fuzzy numbers were studied by Matloka (1986). Later
on sequences of fuzzy numbers have been studied by Kaleva and Seikkala (1984), Tripathy and
Sarma (Tripathy and Das, 2008 and Zadeh, 1965) and many others.

A function f : [0,∞) → [0,∞) is called a modulus function if

(a) f(x) = 0 if and only if x = 0

(b) f(x + y) ≤ f(x) + f(y), for all x ≥ 0, y ≥ 0

(c) f is increasing

(d) f is continuous from the right at 0.

Kizmaz (1981) defined the difference sequence spaces �∞(∆), c(∆),c0(∆) for crisp sets as
follows :

Z (∆) = {X = (Xk) : ∆Xk ∈ Z}
where Z = �∞, c and c0.

2. Definitions and Background. Let X be a non-empty set, then a non-void class
I ⊆ 2X (power set of X) is called an ideal if I is additive (i.e. A, B ∈ I ⇒ A ∪ B ∈ I) and
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hereditary (i.e. A ∈ I and B ⊆ A ⇒ B ∈ I). An ideal I ⊆ 2X said to be non-trivial if I 	= 2X .
A non-trivial ideal I is said to be admissible if I contains every finite subset of N . A non-trivial
ideal I is said to be maximal if there does not exist any non-trivial ideal J 	= I containing I as
a subset.

Let X be a non-empty set, then a non-void class F ⊆ 2X is said to be a filter in X if φ /∈
F ; A, B ∈ F ⇒ A ∩ B ∈ F and A ∈ F , A ⊆ B ⇒ B ∈ F . For any ideal I there is a filter Ψ(I)
corresponding to I, given by

Ψ(I) = {K ⊆ N : N\K ∈ I}.
Let D denote the set of all closed and bounded intervals X = [a1, b1] on the real line R. For

X = [a1, b1] ∈ D and Y = [a2, b2] ∈ D, define

d(X, Y ) = max(|a1 − b1|, |a2 − b2|)

It is known that (D, d) is a complete metric space.

A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R → L(= [0, 1]) associating
each real number t with its grade of membership X(t).

The α-level set Xα of a fuzzy real number X for 0 < α ≤ 1, defined as

Xα = {t ∈ R : X(t) ≥ α}

A fuzzy real number X is called convex, if X(t) ≥ X(s) ∧ X(r) = min(X(s), X(r)), where
s < t < r.

If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper semi-continuous if for each ε > 0, X−1([0, a +
ε)), is open for all a ∈ L in the usual topology of R.

The set of all upper semi-continuous, normal, convex fuzzy number is denoted by L(R).

The absolute value |X| of X ∈ L(R) is defined as

|X|(t) =

{
max{X(t), X(−t)}, if t > 0

0, if t < 0

}

Let d̄ : L(R) × L(R) → R be defined by

d̄(X, Y ) = sup
0≤α≤1

d(Xα, Y α)

Then d̄ defines a metric on L(R).

A sequence (Xk) of fuzzy real number is said to be convergent to the fuzzy real number X0,
if for every ε > 0, there exists n0 ∈ N such that d̄(Xk, X0) < ε for all k ≥ n0.
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A fuzzy real valued sequence space EF is said to be solid if (Yk) ∈ EF whenever (Xk) ∈ EF

and |Yk| ≤ |Xk|, for all k ∈ N .

A sequence (Xk) of fuzzy numbers is said to be I-convergent if there exists a fuzzy number
X0 such that for all ε > 0, the set {n ∈ N : d̄(Xk, X0) ≥ ε} ∈ I.

We write I − lim Xk = X0).

A sequence (Xk) of fuzzy numbers is said to be I-bounded if there exists a real number µ

such that the set {k ∈ N : d̄(Xk, 0̄) > µ} ∈ I.

Throughout cI(F ), c
I(F )
0 and �

I(F )
∞ denote the spaces of fuzzy real-valued I-convergent, I-null

and a I-bounded sequences respectively.

We define the following classes of sequences :

(cI)F (f,∆) =
{

(Xk) :
{

k : f
( d̄(∆Xk, L)

r

)
≥ ε, for some r > 0 and L ∈ R(I)

}
∈ I

}

(cI
0)

F (f,∆) =
{

(Xk) :
{

k : f
( d̄(∆Xk, 0̄)

r

)
≥ ε, for some r > 0

}
∈ I

}
Also we define

(mI)F (f,∆) = (cI)F (f,∆) ∩ �F
∞(f,∆),

(mI
0)

F (f,∆) = (cI
0)

F (f,∆) ∩ �F
∞(f,∆)

3. Main Results

THEOREM 3.1 The spaces (mI)F (f,∆) and (mI
0)

F (f,∆) are complete metric spaces with
respect to the metric given by

g(X, Y ) = d̄(X1, Y1) + inf
{

r > 0 : sup
k

f
( d̄(∆Xk,∆Yk)

r

)
≤ 1

}

Proof: Let (Xn) be a Cauchy sequence in (mI)F (f,∆), where Xn = (Xn
k )

Let ε > 0 be given. For a fixed x0 > 0, choose r > 0 such that f
(

rx0
3

)
≥ 1 and m0 ∈ N

such that g(Xn, Xm) < ε
rx0

for all n, m ≥ m0

By definition of g we have, d̄
(
Xm

1 , Xn
1

)
< ε

Thus (Xm
1 ) is a Cauchy sequence of fuzzy real numbers and so lim

m
Xm

1 exist.

Again

f

(
d̄(∆Xm

k ,∆Xn
k )

g(Xm, Xn)

)
≤ 1 ≤ f

(rx0

3

)

⇒ d̄(∆Xm
k ,∆Xn

k ) <
ε

3
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Thus (∆Xm
k ) is a Cauchy sequence of fuzzy real numbers and so lim

m
∆Xm

k = ∆Xk exist.

Moreover using the existence of lim
m

Xm
1 we can conclude that lim

m
Xm

k exist.

Using continuity of f , f

(
d̄(∆Xm

k ,∆Xk)
r

)
≤ 1

Taking infimum of such r’s we get g(Xn, X) < ε
rx0

< ε for all n ≥ m0.

Thus (Xn) converges to X.

Since Xm, Xn ∈ (mI)F (f,∆) so there exist fuzzy numbers Ym, Yk such that

A =
{

k ∈ N : f
( d̄(∆Xm

k , Yk)
r

)
< f

( ε

3r

)}
∈ Ψ

=
{

k ∈ N : d̄(∆Xm
k , Yk) <

(ε

3

)}
∈ Ψ

B =
{

k ∈ N : d̄(∆Xm
k , Ym) <

(ε

3

)}
∈ Ψ

Now A ∩ B ∈ and let k ∈ A ∩ B.

Then

d̄(Yk, Ym) ≤ d̄(Yk,∆Xn
k ) + d̄(∆Xn

k ,∆Xm
k ) + d̄(∆Xm

k , Ym)

< ε for all n, m ≥ m0.

Thus (Yk) is a Cauchy sequence of fuzzy real numbers. So there exists a fuzzy real number
Y such that limYk = Y . To show that I-lim ∆Xk = Y .

This follows from above inequalities as

d̄(∆Xk, Y ) ≤ d̄(∆Xk,∆Xm
k ) + d̄(∆Xm

k , Yk) + d̄(∆Yk, Y )

< η.

Thus I-lim Xk = Y . Thus (Xk) ∈ (mI)F (f,∆).

THEOREM 3.2 The sequence spaces (cI
0)

F (f,∆), (mI)F (f,∆) and (mI
0)

F (f,∆) are solid.

Proof: We prove the result for (cI
0)

F (f,∆). For the other spaces the result can be proved
similarly.

Let (Xk) ∈ (cI
0)

F (f,∆) and (Yk) be such that |Yk| ≤ |Xk|, for all k ∈ N . Then for given
ε > 0, A =

{
k ∈ N : f

(
d̄(∆Xk,0̄)

r

)
≥ ε, for some r > 0

}
∈ I

Since f is increasing, B =
{

k ∈ N : f
(

d̄(∆Yk,0̄)
r

)
≥ ε, for some r > 0

}
⊂ A

Thus B ∈ I and so (Yk) ∈ (cI
0)

F (f,∆). Hence (cI
0)

F (f,∆) is solid.



some I-convergence of difference sequences of fuzzy real numbers 73

PROPERTY 3.3 The sequence spaces (cI
0)

F (f,∆), (cI)F (f,∆), (mI)F (f,∆) and (mI
0)

F (f,∆)
are not convergence free.

For this result consider the following example.

EXAMPLE 3.2 Let I = Iδ and f(x) = x. Consider the sequence (Xk) defined as follows :

For k 	= i2, i ∈ N

Xk(t) =

{
1, for 0 ≤ t ≤ k−1

0, otherwise

And for k = i2, i ∈ N, Xk(t) = 0̄.

Then for α ∈ (0, 1] we have,

[Xk]α =

{
[0, 0], if k = i2

[0, k−1] if k 	= i2

and

[∆Xk]α =

⎧⎪⎪⎨
⎪⎪⎩

[−(k + 1)−1, 0], for k = i2[
0, k−1

]
, for k = i2 − 1 (i 	= 1)[

−(k + 1)−1, k−1
]
, otherwise

Hence ∆Xk → 0̄ as k → ∞. Thus (Xk) ∈ (cI
0)

F (f,∆) ⊂ (cI)F (f,∆)

Let (Yk) be another sequence such that :

Yk(t) =

{
1, if 0 ≤ t ≤ k

0, otherwise

And for k = i2, i ∈ N, Yk(t) = 0̄.

Now for all α ∈ (0, 1] we have,

[Yk]α =

{
[0, 0], if k = i2

[0, k] if k 	= i2

and

[∆Yk]α =

⎧⎪⎪⎨
⎪⎪⎩

[−(k + 1), 0], for k = i2

[0, k] , for k = i2 − 1 (i 	= 1)

[−(k + 1), k] , otherwise

This implies (Yk) /∈ (cI
0)

F (f,∆) ⊂ (cI)F (f,∆)

Hence (cI
0)

F (f,∆), (cI)F (f,∆) are not convergence free. Similarly the other spaces are also
not convergence free.
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THEOREM 3.4 Z(f1,∆) ⊆ Z(f2of1,∆) for Z = (cI)F , (cI
0)

F and (�I
∞)F .

Proof: Let Z = (cI)F and (Xk) ∈ (cI)F (f1,∆)

Then {
k : f1

(
d̄(∆Xk, L)

r

)
≥ ε, for some r > 0

}
∈ I

Since f2 is continuous, so for ε > 0 there exist η > 0 such that f2(ε) = η.

The result follows from

f2

(
f1

(
d̄(∆Xk, L)

r

))
≥ f2(ε) = η

THEOREM 3.5 Z(f,∆) ⊆ (�I
∞)F (f,∆) for Z = (cI)F , (cI

0)
F

Proof: The proofs are obvious.
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