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Abstract We make a critical analysis on the free parame-
ters of the Cornell potential − 4αs

3r + br + c and provide a
parameterisation space for the strong coupling constant αs

and the constant shift ‘c’ for choosing linear part as pertur-
bation in the potential model. In the analysis of heavy-light
mesons (D, Ds, B, Bs and Bc), we have found a wide range
of values for the coupling constant i.e 0.20 ≤ αs ≤ 0.64 with
−1.2 ≤ c ≤ −0.66 which can be used to treat the confining
part as perturbation.

1 Introduction

QCD potential between a quark and anti quark has been
the first important ingredient of phenomenological model to
study Hadron Physics. The potential model is found to be suc-
cessful in providing both qualitative and quantitative descrip-
tion of hadron spectrum and it’s decay modes. To deal with
a potential model, the choice of the correct QCD potential is
the most important ingredient for its success. There are sev-
eral acceptable potentials in QCD, which is based upon the
two important facts of QCD i.e. the confinement and asymp-
totic freedom of quarks. To study quark-anti quark bound
states, some of the accepted and commonly used potentials
are, Cornell potential [1]: − A

r + Br +c, Power law potential
[2,3]: −Arα+Drβ +c, Logarithmic potential [4]: A+B lnr ,
Richardson potential [5]:Ar − B

rln 1
λr

etc.

However, the potential parameters in the different poten-
tials as well as in the different models are found to vary within
a noticeable range. For example, the value of ‘c’ is found to
vary from model to model. In the work of relativistic quark
model, Faustov et al. has used c = −0.3 GeV [6], Eichten et
al. in Ref. [7] has taken it to be c = 0.50805 GeV, Mao Zhi
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Yang has taken c = −0.19 GeV [8], Scora and Isgur consid-
ered c = −0.81 GeV in Ref. [9], whereas Grant and Rosner
[10] considered a large negative value for c = −1.305 GeV
in a power law potential. The value of the strong running cou-
pling constant αs appearing in the QCD potential has also a
wide range from 0.22 to 0.64 in different theoretical works
as well as in the different schemes like MS, V -scheme etc.
[11–14].

In this work, we review our previous work [15,16] put for-
ward some comments on the perturbation theory of choosing
the linear part of the Cornell potential as perturbation and pro-
vide a parameterisation space for the strong coupling constant
αs and the constant shift c. While taking the Coulomb part
as parent and linear as perturbation one important point is to
be noted that for this choice, the perturbation is possible only
for very small value of ‘b’. In infinite mass limit, the value
of ‘b’ is ≤ 0.03 GeV2 [15] which are much smaller than the
value of ‘b’ in charmonium spectroscopy (≈ 0.183 GeV2).

The paper is organized as follows, in the Sect. 2, we
describe the Cornell potential and its parameters. In Sect. 3,
we describe the QCD potential model with linear part as per-
turbation. In Sect. 4, we discuss the constraints on the strong
coupling constant αs and c. Section 5 contains the conclu-
sions.

2 The Cornell potential and perturbation

For mesons, the one gluon exchange contribution between
quark and antiquark is given by the coulombic potential,

V (r) = −4αs

3r
. (1)

Here, − 4
3 is due to the SU(3) color factor and αs is the

strong coupling constant.
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For large distance, we have confinement of quarks. The
confining potential is given by

V (r) = br, (2)

where b is known as confinement parameter and phenomeno-
logically b = 0.183 GeV2 [16].

Considering the two effects, Cornell potential is written
as:

V (r) = −4αs

3r
+ br + c (3)

which is the sum of coulombic and linear potential with a
scale factor ‘c’. Both the potentials play decisive role in the
quark dynamics and their separation is not possible. Besides
there is no appropriate small parameter so that one of the
potential within a perturbation theory can be made perturba-
tive.

With the Cornell Potential, one cannot solve the Schrod-
inger equation in quantum mechanics except for some sim-
ple models. Therefore, physicists opt for developing efficient
approximate methods. Perturbation theory is one of the help-
ful tools to get an approximate wavefunction with the Cornell
potential. In fact, perturbation theory is considered to be one
of the approximate methods which most appeals to intuition.

However, in perturbation theory, one has to check the con-
vergence of the series which appears in the procedure. If the
rate of convergence of the perturbation series is sufficiently
high then we may expect accurate results.

The advantage of taking Cornell potential for study is that
it leads naturally two choices of “parent” Hamiltonian, one
based on the Coulomb part and the other on the linear term,
which can be usefully compared. It is expected that, in choos-
ing the perturbative part of the potential a dominant role is
played by critical r0 where the potential V (r) = 0. Aitchi-
son and Dudek in Ref. [17] put an argument that if the size
of a state measured by 〈r〉 < r0, then the Coulomb part
as the “Parent” will perform better and if not so the linear
part as “parent” will perform better. The Aitchison’s work
also showed the results that with Coulombic part as pertur-
bation(VIPT), bottomonium spectra are well explained than
Charmonium where as Charmonium states are well explained
with linear part as parent. It becomes noteworthy in this con-
text that the critical distance r0 is not a constant and can be
enhanced by reducing b and c or by increasing αs .

3 The QCD potential model

In this work, a specific potential model with linear part as
perturbation is taken into consideration. For completeness
and proper reference we put the last modified version of the
wavefunction with coulombic part as parent as in Refs. [16,
18,19].

The non-relativistic predictions of potential models with a
non-relativistic Hamiltonian for the heavy-light and heavy-
heavy mesons are found to be in fair agreements with the
updated theoretical, experimental and lattice results. Hence,
we start with the ground state (l = 0) spin independent
non-relativistic Fermi–Breit Hamiltonian (without the con-
tact term),

H = −∇2

2μ
− 4αs

3r
+ br + c. (4)

With the linear term ‘br + c’ as perturbation and using
Dalgarno method, the wave function in the model is obtained
as [16,18–20]

ψrel+con f (r) = N ′
√

πa3
0

e
−r
a0

(
C ′ − μba0r2

2

) (
r

a0

)−ε

, (5)

where

N ′ = 2
1
2√(

22ε� (3 − 2ε)C ′2 − 1
4 μba3

0� (5 − 2ε)C ′ + 1
64 μ2b2a6

0� (7 − 2ε)
) ,

(6)

C ′ = 1 + cA0

√
πa3

0, (7)

μ = mim j

mi + m j
, (8)

a0 =
(

4

3
μαs

)−1

, (9)

ε = 1 −
√

1 −
(

4

3
αs

)2

. (10)

The QCD potential is taken as

V (r) = − 4

3r
αs + br + c. (11)

Here A0 is the undetermined factor appearing in the series

solution of the Schrödinger equation. The term
(

r
a0

)−ε

in

Eq. (5) is the Dirac factor and was introduced to incorporate
relativistic effect [19,21,22]. It is to be noted that the factor(

r
a0

)−ε

to the wave function (5) develops a singularity at

r → 0 and the masses of scalar mesons become negative,
therefore the term can be omitted from the wave function as
discussed in Ref. [12].

Similarly, the wave function with coulombic part ‘− 4αs
3r +

c’ as perturbation and linear part as parent (up to O(4)) is
given by [23],

ψrel+lin(r) = N ′′

r

[
1 + A1(r)r + A2(r)r

2 + A3(r)r
3

+ A4(r)r
4
]
Ai [ρ1r + ρ0]

(
r

a0

)−ε

(12)
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where Ai [r ] is the Airy function [24] and N ′′ is the normal-
ization constant

N ′′ = 1
[∫ ∞

0 4π
[
1 + A1(r)r + A2(r)r2 + A3(r)r3 + A4(r)r4

]2
(Ai [ρ1r + ρ0])2

(
r
a0

)−2ε

dr

] 1
2

. (13)

The co-efficients of the series solution as occurred in Dal-
garno’s method of perturbation, are the functions of αs, μ, b
and c:

A1 = −2μ 4αs
3

2ρ1k1 + ρ2
1k2

(14)

A2 = −2μ(W 1 − c)

2 + 4ρ1k1 + ρ2
1k2

(15)

A3 = −2μW 0A1

6 + 6ρ1k1 + ρ2
1k2

(16)

A4 = −2μW 0A2 + 2μbA1

12 + 8ρ1k1 + ρ2
1k2

. (17)

The different parameters are given by,

ρ1 = (2μb)
1
3 (18)

ρ0 = −
[

3π(4n − 1)

8

] 2
3

. (19)

(In our case n = 1 for ground state)

k1 = 1 + k

r
(20)

k = 0.3550281 − (0.2588194)ρ0

(0.2588194)ρ1
(21)

k2 = k2

r2 (22)

W 1 =
∫

ψ(0)
H ′ψ(0)dτ (23)

W 0 =
∫

ψ(0)
H0ψ
(0)dτ. (24)

Let us now discuss the constraints on the parameters αs

and c in the model.

4 Constraints from two points of view

To evaluate a narrow range of the free parameter in the model,
we consider the two constraints; one from the expectation
value and the other from the convergence point of view in
the model.

4.1 From the condition of expectation value

Considering the argument of Aitchison and Dudek [17] 〈r〉 <

r0 to treat the linear part as perturbation, we should get the

size of a state measured by 〈r〉 < r0, where r0 is the critical
distance at which V (r0) = 0. Now,

〈r〉coul =
∫

ψ∗rψdr = 3a0

2
= r1(say)

and the critical distance r0 at which V (r0) = 0 can be
obtained by the relation

br2
0 + cr0 − 4αs

3
= 0.

The variation of r1 and r0 with the model parameters can be
easily studied from the above relations and the results are
tabulated in Table 1. From the results it is clear that to treat
linear part as perturbation, the value of upper scale of αs is
different for different mesons. The maximum value for B
meson is found to be αs = 0.64 beyond which the condition
〈r〉 < r0 invalid.

4.2 From the convergence point of view

From the momentum transform , we see that for a lower
cut-off value of Q2

0, either one has to consider a very small
value of b or to increase the value of αs , which is obvious,
since in both the cases coulombic part will be more dominant.
However, reality condition of ε from Eq. (10) demands that
αs ≤ 3

4 and hence one can not go beyond αs = 0.75 in this
approach.

From the convergence point of view, the perturbative con-
dition demands [20]

(4 − ε)(3 − ε)μba3
0

2(1 + a2
0Q

2)
� C ′. (25)

For a positive cut off Q0
2, we can write

(4 − ε)(3 − ε)μba3
0

2(1 + a2
0Q0

2)
= C ′. (26)

The values of Q2
0 with b = 0.183 GeV2for B andD

mesons are shown in Table 2.
Thus to incorporate lower value of Q2 (Q2 ≤ �2

QCD),
with linear part as perturbation, one expects a bound of αs ≤
0.64.
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Table 1 Values of r1 and r0 for different mesons with mu/d = 0.33 GeV, ms = 0.483 GeV, mc = 1.55 GeV,mb = 4.97 GeV, b = 0.183 GeV2

and cA0 = 1 GeV

Mesons αs = 0.20 αs = 0.36 αs = 0.45 αs = 0.58 αs = 0.60 αs = 0.64
r1 r0 r1 r0 r1 r0 r1 r0 r1 r0 r1 r0

D(cū/cd̄) – – – – – – 6.990 7.148 6.757 7.167 6.334 7.204

D(cs̄) – – – – – – 5.422 6.151 5.241 6.172 – –

B(b̄u/b̄d) – – – – – – 6.143 6.151 5.938 6.172 – –

Bs(b̄s) – – – – 5.898 6.010 4.576 6.151 – – – –

Bc(b̄c) 4.803 5.719 2.668 5.908 – – – – – – – –

Table 2 Allowed range of αs from the limit of Q2
0 in the Model

Mesons αs = 0.20 αs = 0.36 αs = 0.45 αs = 0.58 αs = 0.60 αs = 0.64

D(μ = 0.2774 GeV) – – – 0.01409 0.01037 0.00204

Ds(μ = 0.3576 GeV) – – – 0.00939 0.00322 –

B(μ = 0.3157 GeV) – – – 0.0125 0.00775 –

Bs(μ = 0.4238 GeV) – – 0.04480 0.00098 – –

Bc(μ = 1.171 GeV) 0.26378 0.092543 – – – –

Table 3 Allowed range of αs
and c for different mesons under
the constraints

Mesons αs c

D(μ = 0.2774 GeV) 0.570–0.640 ≤ −1.2

Ds(μ = 0.3576 GeV) 0.575–0.610 −0.860 to −0.785

B(μ = 0.3157 GeV) 0.580–0.629 −0.998 to −0.887

Bs(μ = 0.4238 GeV) 0.450–0.582 −0.997 to −0.663

Bc(μ = 1.171 GeV) 0.200–0.409 −0.994 to −0.197

Fig. 1 Range of αs and c for
D, Ds , B, BS and Bc
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4.3 Constraints on αs

In the analysis, we further see that the value of αs as well as
the model parameter ‘c’ also play a crucial role in choosing
the parent and perturbative terms. From the above two con-
straints we make an individual range of αs for different heavy
light mesons and tabulate in Table 3. The range of ‘αs’ and
‘c’ within the two constraints are further specified in Fig. 1.

5 Conclusions

In this work, we mainly focus in finding the analytical con-
ditions to treat the linear part of the Cornell potential as per-
turbation. In the analysis we consider two constraints and
evaluate a parameterisation space for αs and c the range of
αs is found to be 0.20 ≤ αs ≤ 0.64 with −1.2 ≤ c ≤ −0.66.
We further note that the positive value of c as is used in [7]
is excluded in the model and other values of αs and ‘c’ as is
used in different phenomenological works [6–8,18–20] are
found to be valid within the parameterisation space provided
in Fig. 1. Further it is to be noted that the allowed space
for Bc meson is too large in comparison to other heavy-light
mesons D, Ds, B, Bs which may be due to the constituents
of two heavy quarks and needs a detailed study to be carried
out.

However with linear part as perturbation, if the value of αs

in the above range is taken to be granted, then with the same
potential another possibility of considering the coulombic
part as perturbation also arises for a value of αs ≤ 0.20.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The data can be
deposited.]
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