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Abstract: The Dalgarno’s method of perturbation is used to solve the Schrodinger’s equation with the Cornell potential

VðrÞ ¼ � 4as
3r

þ br þ c. The short range and long range effect of the potential is incorporated in the same wave function by

using two scales rS and rL as an integration limit. The results for bounds on r.m.s. radii of various heavy flavored mesons

are reported.We have also showed the relation between r.m.s. and charge radius of mesons.
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1. Introduction

Quantum Chromodynamics (QCD) [1] is established to be

the successful theory of strong interaction and the

remaining problem in our understanding of QCD has to do

with quark confinement in hadrons. It is expected that

confinement is the dominant quark-antiquark or quark-

quark interaction at large separation distances and therefore

plays the vital role to explain the properties of highly

excited (large sized) hadrons [2]. In the last few years, the

heavy-heavy mesons (gc; J=w; vc; hc; gb; vbð1; 2; 3PÞ; hb; c
etc.) have been widely studied theoretically as well as

experimentally. Again highly excited light-quark mesons

show a hydrogen-like spectral pattern [3] and can be

reproduced within a non relativistic constituent quark

model framework which becomes asymptotically coulom-

bic [4]. Thus the distance or scale behaviour of the QCD

potential in studying the static and dynamic properties of

hadrons is still a topic to explore. The method of pertur-

bation in this context has the advantage of choosing parent

(more dominant) and perturbative(less dominant) term

from the QCD potential. The advantage of taking Cornell

Potential for study is that it leads naturally to two choices

of parent Hamiltonian, one based on the Coulomb part and

the other on the linear term, which can be usefully com-

pared [5]. Aitchison and Dudek [6] have showed that with

Coulombic part as parent (VIPT), bottomonium spectra are

well explained than charmonium, where as charmonium

states are well explained with linear part as parent.

In this spirit a QCD potential model has been pursued

for the two choices in seperation in ref. [7–9] by consid-

ering the Dalgarno’s method [10, 11] of perturbation. The

results include static and dynamical properties of heavy

flavored mesons, like their form factors, masses, decay

constants as well as Isgur wise function. Here in this work,

we emphasise in the ground state of heavy-light mesons as

well as c�c and b�b states, though c�c and b�b has numbers of

excited states for different ‘l’ and ‘s’ values.

However, while using perturbative method, one should

consider two aspects of Quantum Mechanics: (a) The scale

factor ‘c’ in the potential should not affect the wave

function of the meson even while using perturbation theory

to be compatible with quantum mechanical idea and

(b) The specific choice of perturbative piece (coulomb

or linear) should determine the perturbatively compatible

effective radial separation between the quark and the anti-

quark.

In the present work, we therefore show that only in the

short distance range (0\ r\ rS), linear potential is per-

turbatively compatible while for the alternative choice

(coulomb as perturbation), the corresponding range

belongs to large distance (rL \ r \ 1). The exact*Corresponding author, E-mail: t4tapashi@gmail.com
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magnitudes of rL and rS have explicit dependence on strong

coupling constant as, the confinement parameter b and on

the scale factor c.

The aim of the present paper is to outline the new fea-

tures of the improved version of the model and present the

prediction for the bounds on r.m.s. radii of pseudoscalar

heavy flavored mesons (both heavy light and heavy heavy).

Comparison is then made with those of other models

available in literature.

2. Formalism

2.1. Definition of r.m.s. radius

The r.m.s. radius [12, 13] of the bound state of quark and

anti quark like meson is defined as

hr2
rmsi ¼

Z 1

0

r2½wðrÞ�2dr ð1Þ

having radial wave function wðrÞ.

2.2. Definition of charge radius

The standard definition of charge radius [14] is

hr2
Ei ¼ �6

d2

dQ2
eFðQ2ÞjQ2¼0

ð2Þ

where FðQ2Þ is a meson form factor [15, 16].

Using above equation, the charge radii of various heavy

flavored mesons are calculated in ref.[17, 18].

2.3. Relation between RMS and charge radius

The charge radii can be measured with electromagnetic

probe whether the RMS radii defined as in Eq. (1) cannot

be measured with electromagnetic probe. The RMS radius

is nearly the average \ r2 [ of the quark wave function,

which presumably may be determined in Quark Gluon

Plasma (QGP) experiments presently studied at LHC [19].

However a simple approximate relationship between the

two can be found from the following equation

r2
E ¼

X
i

ei hri2i þ
3

4m2
i

Z
d3p j UðpÞ j2 mi

Ei

� �2f
" #

ð3Þ

derived by Godfrey and Isgur [20].

Here ei is the charge of the ith quark/antiquark, r1 and r2

are the distances of the two quarks/antiquarks measured

from the centre of mass, m is the mass of the quark and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

p
. UðpÞ is the quark momentum distribution.

The exponent f can be determined in a semi-empirical way.

We obtain the inequality

r2
E [

X
i

eihri2i ð4Þ

making the transformation of the co-ordinate we choose

one of the quarks/antiquarks located at the origin. It results

in

r2
E [ ehr2i ð5Þ

where hr2i can be interpreted as the standard RMS as

defined in Eq. (1) and e ¼
P

ei.

It yields the desired results: the ratio of the charge radii

and RMS radii of the meson should always be more than

the square root of the charge of the quark/anti quark of the

meson having the larger value. As an illustration for Dþ

meson, the ratio should not be less than
p

2
3
.

2.4. The total wave functions with an improved

perturbative approach

The Schrodinger equation describing the quark-anti quark

bound state is

� �h2

2m
r2wðrÞ þ ðE � VÞwðrÞ ¼ 0 ð6Þ

The standard QCD potential is defined as [14]

VðrÞ ¼ � 4as
3r

þ br þ c ð7Þ

Where � 4
3

is due to the color factor, as is the strong cou-

pling constant, r is the inter quark distance, b is the con-

finement parameter (phenomenologically, b ¼ 0:183 GeV2

[21]) and ‘c’ is a constant scale factor.

For potential (7), we can make four choices:

Choice-I: � 4as
3r

as parent and br ? c as perturbation

Choice-II: br as parent and � 4as
3r

þ c as perturbation

Choice-III: � 4as
3r

þ c as parent and br as perturbation and

Choice-IV: br ? c as parent and � 4as
3r

as perturbation

It is well known in quantum mechanics that a constant term

‘c’ in the potential can at best shift the energy scale, but

should not perturb the wave function. This important point

has been overlooked in earlier publications [7–9] of the

subject, but the present work takes into account this.

We use the Dalgarno’s method of perturbation to con-

struct the wave functions.

The wave function for choice-I [7] including relativistic

effect is

wtotalðrÞ ¼ N1ffiffiffiffiffiffiffi
pa3

0

p 1 þ cA0

ffiffiffiffiffiffiffi
pa3

0

q
� 1

2
lba0r

2

� �
r

a0

� ���

e
� r

a0 ;

ð8Þ

where A0 is the undetermined co-efficient appearing from

the series solution of Schrodinger’s equation and
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a0 ¼ 4

3
las

� ��1

ð9Þ

l ¼ m1m2

m1 þ m2

: ð10Þ

Here m1 and m2 are the masses of quark and anti quark

respectively and l is the reduced mass of the mesons and

� ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4

3
as

� �2
s

ð11Þ

provides the relativistic effect [22, 23] due to Dirac

modification factor and N1 is the normalization constant

given by

N1 ¼ 1

R1
0

4r2

a3
0

1 þ cA0

ffiffiffiffiffiffiffi
pa3

0

p
� 1

2
lba0r2

h i2
r
a0

� ��2�

e
�2r

a0dr

� �1
2

:

ð12Þ

Similarly, the wave function for choice-II upto Oðr4Þ is

calculated in ref. [24] and is given by

wtotalðrÞ ¼ N2

r
1 þ A1ðrÞr þ A2ðrÞr2 þ A3ðrÞr3
	

þA4ðrÞr4�Ai½q1r þ q0�
r

a0

� ��� ð13Þ

where Ai½r� is the Airy function [25] and N2 is the

normalization constant

The co-efficients of the series solution as occured in

Dalgarno’s method of perturbation, are the functions of

as; l; b and c:

A0 ¼ 0 ð15Þ

A1 ¼
�2l 4as

3

2q1k1 þ q2
1k2

ð16Þ

A2 ¼ �2lðW1 � cÞ
2 þ 4q1k1 þ q2

1k2

ð17Þ

A3 ¼ �2lW0A1

6 þ 6q1k1 þ q2
1k2

ð18Þ

A4 ¼�2lW0A2 þ 2lbA1

12 þ 8q1k1 þ q2
1k2

ð19Þ

The different parameters are given by,

q1 ¼ ð2lbÞ
1
3 ð20Þ

q0 ¼� 3pð4n� 1Þ
8

� �2
3

ð21Þ

(In our case n ¼ 1 for ground state)

k1 ¼1 þ k

r
ð22Þ

k ¼ 0:3550281 � ð0:2588194Þq0

ð0:2588194Þq1

ð23Þ

k2 ¼ k2

r2
ð24Þ

W1 ¼
Z

wð0ÞHH0wð0Þds ð25Þ

W0 ¼
Z

wð0ÞHH0w
ð0Þds: ð26Þ

The above analysis illustrates that the scale factor ‘c’ has

observable effect in the final wave function if we apply

Dalgarno’s method of perturbation. Now in the present

work we want to see whether the term ‘c’ has also its affect

even if we consider ‘c’ in the parent part of the

Hamiltonian.

Using Dalgarno’s method of perturbation the total wave

function for choice-III upto Oðr4Þ is

wtotalðrÞ ¼ N3ffiffiffiffiffiffiffi
pa3

0

p 1 � 1

2
lba0r

2 � 1

20
l2bca0r

4

� �
r

a0

� ���

e
� r

a0

ð27Þ

where the normalization constant N3 is

N3 ¼ 1

R1
0

4r2

a3
0

1 � 1
2
lba0r2 � 1

20
l2bca0r4

	 
2 r
a0

� ��2�

e
�2r

a0dr

� �1
2

ð28Þ

N2 ¼ 1

R r0

0
4p 1 þ A1ðrÞr þ A2ðrÞr2 þ A3ðrÞr3 þ A4ðrÞr4½ �2 Ai½q1r þ q0�ð Þ2 r

a0

� ��2�

dr

� �1
2

:
ð14Þ
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Similiarly, the wave function for choice-IV including

relativistic effect considering upto O(r4) is

wtotalðrÞ ¼ N4

r
1 þ A1ðrÞr þ A2ðrÞr2 þ A3ðrÞr3
	

þA4ðrÞr4�Ai½q1r þ q0�
r

a0

� ��� ð29Þ

where N4 is the normalization constant given by

The co-efficients are

A0 ¼ 0 ð31Þ

A1 ¼
�2l 4as

3

2q1k1 þ q2
1k2

ð32Þ

A2 ¼ �2lW1

2 þ 4q1k1 þ q2
1k2

ð33Þ

A3 ¼ �2lðW0 � cÞA1

6 þ 6q1k1 þ q2
1k2

ð34Þ

A4 ¼ �2lðW0 � cÞA2 þ 2lbA1

12 þ 8q1k1 þ q2
1k2

: ð35Þ

The Eqs. (27) and (29) have showed that even if we con-

sider the scale factor ‘c’ in the parent Hamiltonian, then

also it affects the total wave function.

Therefore, Dalgarno’s method in general conflicts with

the quantum mechanical notion that the scale factor ‘c’

should not have an observable effect except the energy

shift.

There are two possible ways of making the perturbative

approach adequate to quantum mechanics. At phe-

nomenological level one keeps the scale factor in the

potential so that it can contribute to the short and long

range of the inter quark distance without changing the total

wave function in a true sense. A more theoretically satis-

factory approach will be to limit the domain of the appli-

cability of Dalgarno’s method, that it is not applicable to

potential having non-zero scale factor. This approach is

then corrected quantum mechanically. We take this latter

view point in the present paper.

For the validation of the quantum mechanical expecta-

tion we therefore consider c ¼ 0 in the potential (7). In

such situation choice-I & II and III & IV are identical.

Now to find the cut offs we use perturbation conditions:

Case-I: For coulomb as parent and linear as perturbation:

� 4as
3r

[ br ð36Þ

and

Case-II: For linear as parent and coulomb as

perturbation:

br[ � 4as
3r

ð37Þ

From (36) and (37) we can find the bounds on r upto which

case-I and II are valid. Case-I gives the cut off on the short

distance rSmax\
ffiffiffiffiffi
4as
3b

q
and case-II gives the cut off on the

long distance rLmin [
ffiffiffiffiffi
4as
3b

q
.

In Table 1, we show the bounds on rS and rL in Fermi

which yields exact/most restrictive upper bounds of the

quantities to be calculated.

Again the application of Airy function as meson wave

function needs suitable cut off to make the analysis nor-

malizable and convergent. We therefore set the cut off (r0)

in the range 1 Fermi (5.076 GeV�1) [26] for our

calculations.

The Eq. (1) of Sect. 2.1 is thus modified to

hrrms2i ¼
Z rS

0

r2½wðrÞ�2dr þ
Z r0

rL
r2½wðrÞ�2dr ð38Þ

3. Results and discussion

Using Eq. (38) and with the help of the wave functions

from Eqs. (27) and (29) we compute the bounds on RMS

radii of various mesons in the ground state ðl ¼ 0Þ and

results are tabulated in Table 2. However it is to be noted

that rS and rL are the perturbative saturation lengths for

coulomb parent and linear parent respectively. The proper

perturbative range should be far less than the cut offs rS

and rL. The upper bound corresponds to the sum of the

contribution of the two options at short (coulomb parent)

and long distances (linear parent), while the lower bound

correspond to the minimum of the two (linear parent).

The input parameters in the numerical calculations used

are same as our previous work [27–29]; mu ¼ 0:336 GeV,

md ¼ 0:336 GeV, ms ¼ 0:483 GeV, mc ¼ 1:55 GeV and

mb ¼ 4:95 GeV, b ¼ 0:183 GeV2.

N4 ¼ 1

R1
rlong

4p 1 þ A1ðrÞr þ A2ðrÞr2 þ A3ðrÞr3 þ A4ðrÞr4½ �2 Ai½q1r þ q0�ð Þ2 r
a0

� ��2�

dr

� �1
2

:
ð30Þ
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In Table 3, we give the different model predictions of

rms radii for heavy flavored mesons available in literature

[30–32].

From Table 3, we see that the value of rms radii for c�c is

well within the range of Table 2, but the result for b�b is out of

range. A higher value of cut off parameter ðr0Þ in this sense

can improve the results for b�b and then the other theoretical

predictions can be accomodated within the range.

In this work we have taken the cut off r0 ¼1 Fermi (5.076

GeV�1) [26]. However from the result we can conclude that

the scale for light-light, heavy-light and heavy-heavy

mesons should not be same, rather it should be increased with

the increase of the mass scale in a particular way.

From Table 2, the bounds on rrms for Dþðc�d) is

0.3008–1.0924 Fermi and hence the corresponding value of

charge radii ðrEÞ should be more than this bound as total

charge of the meson is ?1 and this fact is found to be within

the prediction. Thus the validitity of Eq. (5) is also tested.

4. Conclusions

We have applied the perturbatively compatible approach to

the QCD potential model studied earlier [7–9, 24, 27] and

computed the upper and lower bounds of the RMS radii of

heavy light mesons. The theoretical prediction of bound for

c�c meson is shown in Table 3. However the ‘c’ itself

cannot be determined from the perturbative analysis. There

is a suggestion in ref. [7] that the scale should not exceed

� 1 GeV for heavy flavored mesons which is consistent

with models of ref. [30–33, 36].

Let us now comment on the physical significance of

RMS radii of heavy flavored mesons and their plausible

experimentally observable possibilities. The present work

will hopefully be useful to extract information on RMS

radii from the charge radii itself for heavy flavored mesons,

where model predictions are available in current literature

[18, 34, 35]. We also check the sensitivity of the cut off

parameter ðr0Þ which is taken to be 1 Fermi in this work

and the results show that the cut off parameter should not

be same for light-light, heavy-light and heavy-heavy

mesons, rather the cut off parameter should be increased

from light to heavy mesons. Moreover it is to be noted that

the coupling constant (as) is chosen only in two scales:

charmonium ðas ¼ 0:39Þ and bottomonium ðas ¼ 0:22Þ
scales. A scale dependent as [37] might be useful in this

context.

Although several theoretical models are available in

literature, but there is no present experimental information

either on charge radii or RMS radii of heavy flavored

mesons. Hopefully, future experiments eg., PANDA [38],

LHCb [19] will yield more information to test the validity

of the simple relations as well as data.
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