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Considering the Cornell potential V (r) = − 4αs

3r
+br+c, we have revisited the Dalgarno’s

method of perturbation by incorporating two scales rshort and rlong as integration limit
so that the perturbative procedure can be improved in a potential model. With the
improved version of the wave function the ground state masses of the heavy–light mesons
D, Ds, B, Bs and Bc are computed. The slopes and curvatures of the form factors of
semileptonic decays of heavy–light mesons in both HQET limit and finite mass limit are
calculated and compared with the available data.
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1. Introduction

The heavy hadron spectroscopy played a major role in the foundation of QCD. In

last few years, it has sparked a renewed interest in the subject due to numerous data

available from the B factories,1 CLEO,2 LHCb3 and the Tevatron.4 In more recent

times, the discovery ofX−Y states5 as possible charmonium and bottonium hybrids

have extended such study of the exotic heavy hadron spectroscopy. The most recent

discoveries of the charmonium pentaquarks6 have further increase its importance.

The simplest system of this area is the heavy–light and heavy–heavy hadrons.

In this paper, we will report a study of such heavy flavored mesons in a QCD

potential model7 pursued in recent years. In the last few years, the experimental

study of heavy–light and heavy–heavy mesons has renewed the theoretical interest

toward Heavy Quark Effective Theory (HQET) and Isgur–Wise function.8–12

The dynamics of the heavy quark meson is governed by the inter-quark potential.

The properties of the heavy mesons are in rough approximation is described by
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the Cornell potential, V (r) = − 4αs

3r + br + c,13 which is a Coulomb-plus-linear

nonrelativistic confinement potential. The first Coulomb term of the potential is

consistent with one-gluon-exchange contribution for short distance. The second

term generates the confinement in long distance. Both the potentials play decisive

role in the quark dynamics and their separation is not possible. Besides there is

no appropriate small parameter so that one of the potential within a perturbative

theory can be made perturbative. The third term “c”14 which is a phenomenological

constant needed to reproduce correct masses of heavy–light meson bound state.

In general, it is expected that a constant term “c” in the potential should not

affect the wave function of the system while applying the perturbation theory.

But in our previous work,15 it is seen that whether the term “c” is in parent or

perturbed part of the Hamiltonian, it always appears in the total wave function

which is inconsistent with the quantum mechanical idea that a constant term “c”

in the potential can at best shift the energy scale, but should not perturb the wave

function, i.e. a Hamiltonian H with such a constant and another H ′ without it

should give rise to the same wave functions.

Due to this inconsistency or for the validation of the quantum mechanical idea

while using perturbation theory like Dalgarno’s method16,17 in this work we have

considered the scaling factor c = 0.

Also in this work both the short range and long range effects are tried to incorpo-

rate in the total wave function. Because in our earlier works,11,18,19 the properties

of the mesons are studied considering the Coulombic part of the Cornell poten-

tial dominant over the linear part. On the other hand in Refs. 10, 20 and 21, the

Schrödinger equation is solved by considering the linear part to be dominant over

the Coulombic part.

However, it is well known that at short distance Coulomb potential plays a more

dominant role than the linear confinement because while the former is inversely

proportional to “r”, the later is linear. Similarly, for large distance the confinement

takes over the Coulomb effect. Therefore, if the inter-quark separation “r” can

be roughly divided into short distance (rshort) and long distance (rlong) effectively

one of the potential will dominate over the other. In such situation confinement

parameter (b) and the strong coupling parameter (αs) can be considered as effective

and appropriate small perturbative parameters.

This paper is organized as follows. In Sec. 2, we outline the formalism, while in

Sec. 3 summarize the results for masses of various mesons and slope and curvature

for Isgur–Wise function. Section 4 contains conclusion and comments.

2. Formalism

2.1. Dalgarno’s method of perturbation

The nonrelativistic two body Schrödinger equation17 is

H |ψ〉 = (H0 +H ′)|ψ〉 = E|ψ〉 , (1)
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so that the first-order perturbed eigenfunction ψ(1) and eigenenergy W (1) can be

obtained using the relation

H0ψ
(1) +H ′ψ(0) =W (0)ψ(1) +W (1)ψ(0) , (2)

where

W (0) =
〈

ψ(0)
∣

∣H0

∣

∣ψ(0)
〉

, (3)

W (1) =
〈

ψ(0)
∣

∣H ′
∣

∣ψ(0)
〉

. (4)

We calculate the total wave functions using Dalgarno’s method of perturbation

for the potential

V (r) = −
4αs

3r
+ br , (5)

where − 4
3 is due to the color factor, αs is the strong coupling constant, r is

the inter-quark distance, b is the confinement parameter (phenomenologically,

b = 0.183 GeV2).22

For potential of type (5), one of the choice for parent and perturbed Hamilto-

nian is

H0 = −
4αs

3r

and

H ′ = br .

The total wave function (App. A) for this case is

ψtotal
I (r) =

N
√

πa30

[

1−
1

2
µba0r

2

](

r

a0

)

−ǫ

e−
r

a0 , (6)

where normalization constant is

N =
1

[

∫ rshort

0
4r2

a3
0

[

1− 1
2µba0r

2
]2( r

a0

)

−2ǫ
e
−

2r
a0 dr

]
1
2

, (7)

where the cutoff parameter rshort is used as integration limit for Coulomb as parent

and linear as perturbation. Because here Coulomb part is considered to be dominant

over the linear part for short distance and

a0 =

(

4

3
µαs

)

−1

, (8)

µ =
mqmQ

mq +mQ
, (9)
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mq and mQ are the masses of the light and heavy quark/antiquark respectively and

µ is the reduced mass of the mesons and

ǫ = 1−

√

1−

(

4

3
αs

)2

(10)

is the correction for relativistic effect23,24 due to Dirac modification factor.

Similarly, the wave function up to O(r4) (App. B) for another choice of parent

and perturbed Hamiltonian of (5), where

H0 = br (11)

and

H ′ = −
4αs

3r
, (12)

is

ψtotal
II (r) =

N ′

r

[

1 +A0r
0 +A1(r)r +A2(r)r

2

+A3(r)r
3 +A4(r)r

4
]

Ai[ρ1r + ρ0]

(

r

a0

)

−ǫ

, (13)

where Ai[r] is the Airy function25 and N ′ is the normalization constant,

N ′ =
1

[

∫ r0
rlong

4π
[

1+A0r0+A1(r)r+A2(r)r2+A3(r)r3+A4(r)r4
]2(

Ai[ρ1r+ρ0]
)2( r

a0

)−2ǫ
dr

] 1
2

.

(14)

The cutoff parameter rlong is used as integration limit because we have con-

sidered linear as parent and Coulomb as perturbation, where the linear part is

considered to be dominant over the Coulomb part for long distance. The upper

cutoff r0 is used to make the analysis normalizable and convergent, because we

have used Airy function as meson wave function. Later, we fixed r0 to 1 Fermi26

for our calculations.

The coefficients of the series solution as occurred in Dalgarno’s method of per-

turbation are the function of αs, µ, and b:

A0 = 0 , (15)

A1 =
−2µ 4αs

3

2ρ1k1 + ρ21k2
, (16)

A2 =
−2µW 1

2 + 4ρ1k1 + ρ21k2
, (17)
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A3 =
−2µW 0A1

6 + 6ρ1k1 + ρ21k2
, (18)

A4 =
−2µW 0A2 + 2µbA1

12 + 8ρ1k1 + ρ21k2
. (19)

The parameters are

ρ1 = (2µb)
1
3 , (20)

ρ0 = −

[

3π(4n− 1)

8

]
2
3

, (21)

(in our case n = 1 for ground state)

k =
0.355− (0.258)ρ0

(0.258)ρ1
, (22)

k1 = 1 +
k

r
, (23)

k2 =
k2

r2
, (24)

W 1 =

∫

ψ(0)⋆H ′ψ(0)dτ , (25)

W 0 =

∫

ψ(0)⋆H0ψ
(0)dτ . (26)

2.2. Ground state masses of mesons

Masses of heavy flavored mesons in a specific potential model in the ground state

can be obtained as:

MP = mq/Q +mq̄/Q̄ + 〈H〉 , (27)

where mq/Q is mass of light (or heavy) quark and mq̄/Q̄ is mass of light (or heavy)

antiquark constituting the meson bound state.

The above expression shows that to calculate the masses of mesons one needs

to find 〈H〉, so that

〈H〉 =

〈

p2

2µ

〉

+ 〈V (r)〉

= 4π

∫

∞

0

r2ψ∗(r)Hψ(r)dr

= 4π

∫

∞

0

r2ψ∗(r)

(

p2

2µ
+ V (r)

)

ψ(r)dr . (28)
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To take into account both the Coulomb and linear parts of the potential we

improve the above equation with the cutoff scales rshort and rlong as

〈H〉 = 4π

[
∫ rshort

0

r2ψ∗

I (r)

(

p2

2µ
+ V (r)

)

ψI(r)dr

+

∫ r0

rlong
r2ψ∗

II(r)

(

p2

2µ
+ V (r)

)

ψII(r)dr

]

, (29)

where the wave functions ψI(r) and ψII(r) are defined in Eqs. (6) and (13),

respectively.

2.3. Slope and curvature of Isgur Wise function

Isgur, Wise, Georgi and others showed that in weak semileptonic decays of heavy–

light mesons (e.g. B mesons to D or D∗ mesons), in the limit mQ → ∞ all the

form factors that describe these decays are expressible in terms of a single univer-

sal function of velocity transfer, which is normalized to unity at zero-recoil. This

function is known as the Isgur–Wise function. It measures the overlap of the wave

functions of the light degrees of freedom in the initial and final mesons moving with

velocities v and v′ respectively.

The Isgur–Wise functions are denoted by ξ(Y ), where Y = v ·v′ and ξ(Y )|Y=1 =

1 is the normalization condition at the zero-recoil point (v = v′).27

The calculation of Isgur–Wise function is nonperturbative in principle and is per-

formed for different phenomenological wave functions for mesons.11,21 This function

depends upon the meson wave function and some kinematic factor as given below:

ξ(Y ) =

∫

∞

0

4πr2|ψ(r)|2 cos(pr)dr , (30)

where ψ(r) is the wave function for light quark only and

cos(pr) = 1−
p2r2

2
+
p4r4

24
+ · · · (31)

with p2 = 2µ2(Y − 1).

Taking cos(pr) up to O(r4), we get,

ξ(Y ) =

∫

∞

0

4πr2|ψ(r)|2 dr −

[

4πµ2

∫

∞

0

r4|ψ(r)|2 dr

]

(Y − 1)

+

[

2

3
πµ4

∫

∞

0

r6|ψ(r)|2 dr

]

(Y − 1)2 . (32)

In an explicit form, the Isgur–Wise function can be written as28,29

ξ(Y ) = 1− ρ2(Y − 1) + C(Y − 1)2 , (33)

where ρ2 > 0.
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The quantity ρ2 is the slope of the Isgur–Wise function which determines the

behavior of Isgur–Wise function close to zero recoil point (Y = 1) and known as

charge radius:

ρ2 =
∂ξ

∂Y

∣

∣

∣

∣

Y =1

. (34)

The second-order derivative is the curvature of the Isgur–Wise function known

as convexity parameter:

C =
1

2

(

∂2ξ

∂Y 2

)∣

∣

∣

∣

Y =1

. (35)

A precise knowledge of the slope and curvature of ξ(Y ) basically determines the

Isgur–Wise function in the physical region. In HQET as proposed by Neubert,28

the Isgur–Wise function at zero recoil point allows us to determine CKM element

|Vcb|
30 for the semileptonic decays B0 → D∗lν and B0 → Dlν.

Now from Eqs. (32) and (33),

ρ2 = 4πµ2

∫

∞

0

r4|ψ(r)|2 dr , (36)

C =
2

3
πµ4

∫

∞

0

r6|ψ(r)|2 dr (37)

and
∫

∞

0

4πr2|ψ(r)|2 dr = 1 . (38)

In this work, we improve the above equations for ρ2 and C to

ρ2 = 4πµ2

[
∫ rshort

0

r4|ψI(r)|
2 dr +

∫ r0

rlong
r4|ψII(r)|

2 dr

]

(39)

and

C =
2

3
πµ4

[
∫ rshort

0

r6|ψI(r)|
2dr +

∫ r0

rlong
r6|ψII(r)|

2 dr

]

. (40)

Using these modified expressions for slope and curvature of Isgur–Wise function

in Eq. (33), we have computed the results. In Eqs. (39) and (40), ψI(r) and ψII(r)

are the wave functions as defined in (6) and (13), respectively.

Now to find the cutoffs rshort and rlong, we use the two choices of perturbative

conditions:

Choice I: For Coulomb as parent and linear as perturbation

−
4αs

3r
> br . (41)

Choice II: For linear as parent and Coulomb as perturbation

br > −
4αs

3r
. (42)
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Table 1. rshort and rlong in Fermi with c = 0 and
b = 0.183 GeV2.

αs-value rshort = rlong (Fermi)

0.39 (for charmonium scale) 0.332

0.22 (for bottomonium scale) 0.249

Table 2. Reduced masses of heavy–light
mesons in GeV.

Meson Reduced mass (µ) (GeV)

D(cū/cd̄) 0.276

Ds(cs̄) 0.368

B(ub̄/db̄) 0.314

Bs(sb̄) 0.440

Bc(b̄c) 1.180

From (41) and (42), we can find the bounds on r up to which choices I and II are

valid. Choice I gives the cutoff on the short distance rshortmax <
√

4αs

3b and choice II

gives the cutoff on the long distance rlongmin >
√

4αs

3b .

We make rshort = rlong =
√

4αs

3b for our analysis, otherwise unless they are

identical, the addition of two counterparts (linear part and Coulomb part) either

overestimate or underestimate the calculated values of quantities which involves the

integration over 0 to rshort and rlong to r0.
31

In Table 1, we show the bounds on rshort and rlong in Fermi which yields exact/

most restrictive upper bounds of the quantities to be calculated.

3. Results

We calculate the masses of various heavy–light mesons using Eq. (27) and the

obtained results are compared with the experimental data32 in Table 3. We have

used Mathematica version 7.0.0 to compute the results.

The input parameters in the numerical calculations used are mu = 0.336 GeV,

ms = 0.483 GeV, mc = 1.55 GeV, mb = 4.95 GeV and b = 0.183 GeV2 and αs

values 0.39 and 0.22 for charmonium and bottomonium scale, respectively, are same

with the previous work.15,31

With these values, the reduced masses (µ) of the mesons using Eq. (9) are shown

in Table 2.

Our results for B mesons are found to be more agreement with experimental

data than D mesons.

In Tables 4 and 5, we find slope (ρ2 and ρ′2) and curvature (C and C′) using

modified Eqs. (39) and (40), respectively.
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Table 3. Masses of heavy–light mesons in GeV.

rS = rL Mass (MP ) Experimental mass

αs Meson (Fermi) (GeV) (GeV) (Ref. 32)

0.39
D(cū/cd̄)

0.332
2.378 1.869 ± 0.0016

Ds(cs̄) 2.500 1.968 ± 0.0033

0.22
B(ub̄/db̄)

0.249

5.798 5.279 ± 0.0017

Bs(sb̄) 5.902 5.366 ± 0.0024

Bc(b̄c) 6.810 6.277 ± 0.006

Table 4. Values of ρ2 and C in this present work and
other works in the limit mQ → ∞.

ρ2 C

Present work 1.176 0.180

Other work

Le Youanc et al.34 ≥ 0.75 0.47

Rosner35 1.66 2.76

Mannel36 0.98 0.98

Pole ansatz37 1.42 2.71

Ebert et al.38 1.04 1.36

Table 5. Values of slope (ρ′2) and curvature (C′) of the form
factor of heavy meson decays in this present work and previous
work with finite mass correction.

Meson ρ′ 2 C′

Present work

D(cū/cd̄) 0.911 0.106

Ds(cs̄) 1.318 0.228

B(ub̄/db̄) 1.110 0.260

Bs(sb̄) 1.722 0.721

Bc(cb̄) 4.646 6.074

Previous work11,33

D(cū/cd̄) 1.136 5.377

Ds(cs̄) 1.083 3.583

B(ub̄/db̄) 128.28 5212

Bs(sb̄) 112.759 4841

Previous work30 Bc(cb̄) 5.45 31.39

The numerical results for ρ2 and C in the Isgur–Wise limit is shown in Table 4,

where we consider the limit where the mass of active quark/antiquark (in this case

b-quark) is infinitely heavy (mQ/mQ̄ → ∞) and the reduced mass µ becomes that of

the light quark/antiquark (mq/m̄q) (in this case u-quark). We have also compared

our results with the predictions of other theoretical models.34–38
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(a) In the limit mQ → ∞ (b) Finite mass correction

Fig. 1. Variation of form factor with Y in the Isgur–Wise limit is represented in (a) and that of
finite mass correction is represented in (b).

However, in a generalized way, we can also check the flavor dependence of the

form factor in heavy meson decays. We calculate the slope (ρ′2) and curvature (C′)

of form factor of semileptonic decays in finite mass limit with the flavor dependent

correction. In Table 5, we compare our present results with the previous work.11,33

The results in this work clearly shows an improvement of the previous analysis.

The variation of Isgur–Wise function ξ(Y ) with Y in the Isgur–Wise limit is

shown in Fig. 1(a) (using Table 4), where the mass of the b-quark is considered

to be infinitely heavy and the reduced mass µ is 0.336 GeV (mass of u or d-

quark/antiquark). In a similar way, we draw the graph of Fig. 1(b) (using Table 5)

for finite mass and flavor dependent correction. Also for comparison the results of

Refs. 35 and 38 are plotted in both the graphs.

To draw the graphs as shown in Fig. 1, we have used Eqs. (39) and (40) in (33).

ξ(Y ) is found to have expected fall with Y = v · v′. It is also seen from the figure

that the computed results are well within the other model values.35,38

4. Discussion and Conclusion

We have calculated the values of masses and convexity parameter of the Isgur–Wise

function considering the scaling factor “c” as zero. One of the important point

about this work is that we have given equal fitting to both the Coulomb and linear

parts of the Cornell potential unlike in the previous analysis.10,11,18–21,30,33 Also our

calculations provide a measure of the slope and curvature of the form factors with

finite mass corrections. We can say that the modification induced by mass effect

is not so significant. Furthermore, the consideration of the finite mass correction

changes the results only slightly (significantly for B(ub̄/db̄) meson). However, for

the mesons where light quark/antiquark is not so light compared to the heavy

quark/antiquark, the finite mass limit do show a very strong dependence on the

spectator quark mass; for example we can see Bc(cb̄) meson (Table 5).

Our calculated values of masses of mesons are found to be in good agreement

with the experimental data (Table 3). Also the calculated values of slope and

1650189-10
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curvature of Isgur–Wise function in this work are well within the limit of other theo-

retical values (Table 4). However, the re-evaluation of the model with a nonzero

scaling factor with the satisfaction of the quantum mechanical idea is currently

under study.

Let us conclude this paper with a comment that the relativity is by no means

negligible for heavy–light systems. Such effects do not merely lead to a Dirac modi-

fication factor as used in this work, but also have other significant effects as have

been studied in various relativistic treatments of the problem.38 Inspite of the phe-

nomenological success of the present model, it falls short of such expectation.
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Appendix A. Wave Function for Coulomb (−4αs

3r
) as Parent and

Linear (br) as Perturbation

The first-order perturbed eigenfunction ψ(1) and first-order eigenenergyW (1) using

quantum mechanical perturbation theory (Dalgarno’s method) can be obtained

using the relation

H0ψ
1 +H ′ψ(0) =W0ψ

(1) +W (1)ψ(0) , (A.1)

where

W (1) =
〈

ψ(0)
∣

∣H ′
∣

∣ψ(0)
〉

(A.2)

=

∫

ψ⋆
100H

′ψ100 dτ . (A.3)

For Cornell potential (5), we consider

H0 = −
4αs

3r
(A.4)

and

H ′ = br . (A.5)

From (A.1) we obtain
(

H0 −W (0)
)

ψ(1) =
(

W (1) −H ′
)

ψ(0) . (A.6)

Putting

A =
4αs

3
, (A.7)
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we obtain

H0 = −
~
2

2µ
∇2 −

A

r
, (A.8)

W (0) = E =
µA2

2
(A.9)

and

ψ(0)(r) =
1

√

πa30
e−

r

a0 , (A.10)

where ψ(0) is the unperturbed wave function in the zeroth-order of perturbation

and a0 is given by Eq. (8).

Taking ~
2 = 1,

(A.6) ⇒

(

−
~
2

2µ
∇2 −

A

r
− E

)

ψ(1) =
(

W (1) − br
) 1
√

πa30
e
−

r

a0

⇒

(

∇2 +
2µA

r
− µ2A2

)

ψ(1) =
(

br −W (1)
) 2µ
√

πa30
e
−

r

a0

⇒

(

∇2 +
2

a0r
−

1

a20

)

ψ(1) =
(

br −W (1)
) 2µ
√

πa30
e
−

r

a0 . (A.11)

Let

ψ(1) = (br)R(r) , (A.12)

then

(A.11) ⇒

(

d2

dr2
+

2

r

d

dr
+

2

a0r
−

1

a20

)

(br)R(r) = D(br −W (1))e
−

r

a0 , (A.13)

where we put

D =
2µ

√

πa30
. (A.14)

Now

d

dr
(brR(r)) = bR(r) + br

dR

dr
, (A.15)

d2

dr2
(brR(r)) = 2b

dR

dr
+ br

d2R

dr2
. (A.16)

Using (A.15) and (A.16) in (A.13), we obtain

br
d2R

dr2
+ 2b

dR

dr
+

2

r
bR(r) +

2

r
br
dR

dr

+
2

a0r
brR(r) −

1

a20
brR(r) = D(br −W (1))e−

r

a0 . (A.17)
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Putting

R(r) = F (r)e
−

r

a0 , (A.18)

dR

dr
= F ′(r)e

−
r

a0 −
1

a0
F (r)e

−
r

a0 , (A.19)

d2R

dr2
= F ′′(r)e

−
r

a0 −
2

a0
F ′(r)e

−
r

a0 +
1

a20
F (r)e

−
r

a0 , (A.20)

(A.17) ⇒ br

{

F ′′(r) −
2

a0
F ′(r) +

1

a20
F (r)

}

+ 2b

{

F ′(r) −
1

a0
F (r)

}

+
2b

r
F (r)

+ 2bF ′(r)−
2b

a0
F (r) +

2b

a0
F (r) −

1

a20
brF (r) = D(br −W (1))

⇒ brF ′′(r) +

{

4b−
2b

a0
r

}

F ′(r) +

{

2b

r
−

2b

a0

}

F (r) = D
(

br −W (1)
)

.

(A.21)

Let

F (r) =

∞
∑

n=0

Anr
n , (A.22)

then

F ′(r) =

∞
∑

n=0

nAnr
n−1 (A.23)

and

F ′′(r) =

∞
∑

n=0

n(n− 1)Anr
n−2 . (A.24)

(A.21) ⇒ br

∞
∑

n=0

n(n− 1)Anr
n−2 +

{

4b−
2b

a0
r

} ∞
∑

n=0

nAnr
n−1

+

{

2b

r
−

2b

a0

} ∞
∑

n=0

Anr
n = D

(

br −W (1)
)

⇒

{

b
∞
∑

n=0

n(n− 1)An + 4b
∞
∑

n=0

nAn + 2b
∞
∑

n=0

An

}

rn−1

−

{

2b

a0

∞
∑

n=0

nAn +
2b

a0

∞
∑

n=0

An

}

rn = D
(

br −W (1)
)

. (A.25)
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Equating the coefficients of r−1 on both sides of the above identity (A.25)

2bA0 = 0 ,

since b 6= 0, therefore

⇒ A0 = 0 . (A.26)

Equating the coefficients of r0 on both sides of the identity (A.25),

4bA1 + 2bA1 −
2b

a0
A0 = −DW (1)

⇒ A1 = −
DW (1)

6b
. (A.27)

Equating the coefficients of r1 on both sides of the identity (A.25),

2bA2 + 8bA2 + 2bA2 −
2b

a0
A1 −

2b

a0
A1 = Db .

Using (A.27) and (A.26),

A2 =
D

12
−
DW (1)

18ba0
. (A.28)

Equating the coefficients of r2 on both sides of the identity (A.25),

6bA3 + 12bA3 + 2bA3 −
4b

a0
A2 −

2b

a0
A2 = 0 . (A.29)

Using (A.27) and (A.28),

A3 =
D

40a0
−
DW (1)

60ba20
. (A.30)

Equating the coefficients of r3 on both sides of the identity (A.25),

12bA4 + 16bA4 + 2bA4 −
2b

a0
3A3 −

2b

a0
A3 = 0 .

Using (A.28) and (A.30),

A4 =
D

150a20
−
DW (1)

225ba30
. (A.31)

From (A.22)

F (r) = A0r
0 +A1r

1 +A2r
2 +A3r

3 +A4r
4 + · · · . (A.32)

Now from (A.12), (A.18) and (A.32),

ψ(1)(r) = brF (r)e−
r

a0 (A.33)

= br
(

A0r
0 +A1r

1 +A2r
2 +A3r

3 +A4r
4 + · · ·

)

e
−

r

a0

=
{

A0(br) +A1(br
2) +A2(br

3) +A3(br
4) +A4(br

5) + · · ·
}

e−
r

a0 . (A.34)

1650189-14
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Now applying (A.26)–(A.28), (A.30)–(A.34),

ψ(1)(r) =

[

−
DW

6b
(br2) +

{

D

6

(

1

2
−

W

3ba0

)}

(br3)

+

{

D

20a0

(

1

2
−

W

3ba0

)}

(br4) +

{

D

75a20

(

1

2
−

W

3ba0

)}

(br5)

]

e−
r

a0 .

(A.35)

Again from (A.2)

W (1) =

∫

ψ⋆
100H

′ψ100 dτ =
1

πa30

∫

∞

0

(br)r2e−
2r
a0 dr

∫ π

0

sin θ dθ

∫ 2π

0

dφ

=
4π

πa30

∫

∞

0

(br3)e
−

2r
a0 dr =

4

a30

[

b
6a40
16

]

=
3

2
ba0 . (A.36)

Hence

1

2
−

W

3ba0
= 0 . (A.37)

Therefore, (A.35) reduces to

ψ(1)(r) =

[

−
DW

6b
(br2)

]

e
−

r

a0 = −
1

2
√

πa30
µba0r

2 e
−

r

a0 . (A.38)

The total wave function is thus

ψtotal = ψ(0) + ψ(1) =
1

√

πa30

[

1−
1

2
µba0r

2

]

e
−

r

a0 . (A.39)

Considering relativistic effect the above equation becomes

ψtotal(r) =
N

√

πa30

[

1−
1

2
µba0r

2

](

r

a0

)

−ǫ

e−
r

a0 . (A.40)

Appendix B. Wave Function for Linear (br) as Parent and

Coulomb (−4αs

3r
) as Perturbation

Here we take br as parent and − 4αs

3r as perturbation so that

H0 = −
~
2

2µ
∇2 + br (B.1)

with

H ′ = −
4αs

3r
. (B.2)

To find the unperturbed wave function corresponding to H0 we employ the

radial Schrödinger equation for potential br for ground state,

−
1

2µ

[(

d2

dr2
+

2

r

d

dr

)

+ br

]

R(r) = ER(r) , (B.3)
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December 16, 2016 11:36 IJMPA S0217751X1650189X page 16

T. Das, D. K. Choudhury & K. K. Pathak

where R(r) is the radial wave function. We introduce u(r) = rR(r) and the dimen-

sionless variable

ρ(r) = (2µb)
1
3 r −

(

2µ

b2

)
1
3

E . (B.4)

Equation (B.3) then reduces to

d2u

dρ2
− ρu = 0 . (B.5)

The solution of this second-order homogeneous differential equation contains

linear combination of two types of Airy’s functions Ai[r] and Bi[r]. The nature of

the Airy’s function reveals that

Ai[r] → 0 and Bi[r] → ∞ as r → ∞ .

So, it is reasonable to reject the Bi[r] part of the solution.

The unperturbed wave function21 for ground state is

ψ(0)(r) =
N0

r
Ai[ρ1r + ρ0] , (B.6)

where N0 is the normalization constant and ρ1 = (2µb)1/3. ρ0 is the zero of the Airy

function, such that Ai[ρ0] = 0. ρ0 has the explicit form as mentioned in Eq. (21).

The first-order perturbed eigenfunction ψ(1) can be calculated using rela-

tion (A.6).

Then taking ~
2 = 1,

(A.6) ⇒

(

−
~
2

2µ
∇2 + br − E

)

ψ(1) =

(

W (1) +
4αs

3r

)

ψ(0)(r) . (B.7)

In terms of the radial wave function the above equation can be expressed as
[(

d2

dr2
+

2

r

d

dr

)

− 2µ(br − E)

]

R(r) = −2µ

(

W (1) +
4αs

3r

)

1

r
Ai[ρ] . (B.8)

Let

R(r) =
1

r
F (r)Ai[ρ] =

1

r
F (r)Ai[ρ1r + ρ0] , (B.9)

so that

dR

dr
= −

1

r2
F (r)Ai[ρ] +

1

r
F ′(r)Ai[ρ] +

ρ1
r
F (r)Ai′[ρ] , (B.10)

d2R

dr2
=

2

r3
F (r)Ai[ρ]−

2

r2
F ′(r)Ai[ρ]−

2ρ

r2
F (r)Ai′[ρ]

+
1

r
F ′′ Ai[ρ1] +

2ρ1
r
F ′(r)Ai′[ρ] +

ρ21
r
F (r)Ai′′[ρ] . (B.11)

Now we introduce the identity

Ai′[ρ] =
dAi(ρ)

dr
= Z(ρ)Ai(ρ) , (B.12)
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so that

Ai′′(ρ) = Z2(ρ)Ai(ρ) + Z ′(ρ)Ai(ρ) . (B.13)

Then Eq. (B.8) becomes

F ′′(r) + 2ρ1F
′(r)Z(ρ) + ρ21[Z

2(ρ) + Z ′(ρ)]F (r) − 2µ(br − E)F (r)

= −
4αs

3

2µ

r
− 2µW (1) . (B.14)

Assuming

Z(ρ) =
k1(r)

r

and

Z2(ρ) + Z ′(ρ) =
k2(r)

r2
,

(B.14) ⇒ F ′′(r) + 2ρ1F
′(r)

k1(r)

r
+ ρ21F (r)

k2(r)

r2
− 2µ(br − E)F (r)

= −
4αs

3

2µ

r
− 2µW (1) . (B.15)

Now using (A.22)–(A.24), the above equation (B.15) becomes

n(n− 1)
∑

n

Anr
n−2 + 2ρ1l

∑

n

Anr
n−1 k1

r
+ ρ21

∑

n

Anr
n k2
r2

− 2µ(br − E)
∑

n

Anr
n = −

4αs

3

2µ

r
− 2µW (1) , (B.16)

⇒

[

n(n− 1)
∑

n

An + 2ρ1n
∑

n

Ank1 + ρ21
∑

n

Ank2

]

rn−2

− 2µb
∑

n

Anr
n+1 + 2µE

∑

n

Anr
n = −

4αs

3

2µ

r
− 2µW (1) . (B.17)

Now equating the coefficients of r−2 from the above equation (B.17),

ρ21A0k2 = 0 ⇒ A0 = 0 . (B.18)

Equating the coefficients of r−1 of (B.17),

2ρ1A1k1 + ρ21A1k2 = −2µ
4αs

3
⇒ A1 =

−2µ 4αs

3

2ρ1k1 + ρ21k2
. (B.19)

Equating the coefficients of r0 of (B.17),

2A2 + 4ρ1A2k1 + ρ21A2k2 + 2µEA0 = −2µW (1)

⇒ A2 =
−2µW (1)

2 + 4ρ1k1 + ρ21k2
. (B.20)
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Equating the coefficients of r1 of (B.17),

6A3 + 6ρ1A3k1 + ρ21A3k2 − 2µbA0 + 2µEA1 = 0

⇒ A3 =
−2µEA1

6 + 6ρ1k1 + ρ21k2
. (B.21)

Equating the coefficients of r2 of (B.17),

12A4 + 8ρ1A4k1 + ρ21A4k2 − 2µbA1 + 2µEA2 = 0

⇒ A4 =
−2µEA2 + 2µbA1

12 + 8ρ1k1 + ρ21k2
. (B.22)

Using (A.32), the perturbed wave function will be

ψ(1)(r) =
1

r
[A0r

0 +A1r
1 +A2r

2 +A3r
3 +A4r

4 + · · · ]Ai[ρ1r + ρ0] . (B.23)

Now considering up to O(r4) with relativistic effect the total wave function is

thus

ψtotal(r) =
N ′

r
[1 +A0r

0 +A1r
1 +A2r

2 +A3r
3 +A4r

4]Ai[ρ1r + ρ0]

(

r

a0

)

−ǫ

.

(B.24)
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